Our panel of 91 professional philosophers has responded to

134
 questions about 
Love
96
 questions about 
Time
5
 questions about 
Euthanasia
208
 questions about 
Science
23
 questions about 
History
43
 questions about 
Color
105
 questions about 
Art
75
 questions about 
Perception
374
 questions about 
Logic
54
 questions about 
Medicine
117
 questions about 
Children
154
 questions about 
Sex
392
 questions about 
Religion
218
 questions about 
Education
282
 questions about 
Knowledge
2
 questions about 
Action
31
 questions about 
Space
287
 questions about 
Language
36
 questions about 
Literature
80
 questions about 
Death
70
 questions about 
Truth
244
 questions about 
Justice
27
 questions about 
Gender
284
 questions about 
Mind
574
 questions about 
Philosophy
68
 questions about 
Happiness
34
 questions about 
Music
77
 questions about 
Emotion
24
 questions about 
Suicide
51
 questions about 
War
110
 questions about 
Animals
4
 questions about 
Economics
124
 questions about 
Profession
58
 questions about 
Abortion
1280
 questions about 
Ethics
2
 questions about 
Culture
67
 questions about 
Feminism
69
 questions about 
Business
88
 questions about 
Physics
39
 questions about 
Race
75
 questions about 
Beauty
110
 questions about 
Biology
89
 questions about 
Law
32
 questions about 
Sport
81
 questions about 
Identity
170
 questions about 
Freedom
221
 questions about 
Value
151
 questions about 
Existence
58
 questions about 
Punishment

Question of the Day

Using ">" for material implication, (P > Q) is equivalent to each of (~ P v Q) and (Q v ~ P). So you can deduce either of those disjunctions. I think it's just a matter of convention to favor the first of them. The reader is expected to notice the equivalence of the two disjunctions.

Now, (Q v ~ P) is certainly not equivalent to (~ Q v ~ P). From Q, you can infer the first of those disjunctions but not the second. The disjunction (Q v ~ P) is equivalent to (P > Q), whereas the disjunction (~ Q v ~ P) is equivalent to (P > ~ Q) and (Q > ~ P).