Our panel of 91 professional philosophers has responded to

282
 questions about 
Knowledge
31
 questions about 
Space
80
 questions about 
Death
39
 questions about 
Race
110
 questions about 
Animals
51
 questions about 
War
2
 questions about 
Action
2
 questions about 
Culture
96
 questions about 
Time
58
 questions about 
Abortion
23
 questions about 
History
27
 questions about 
Gender
110
 questions about 
Biology
170
 questions about 
Freedom
70
 questions about 
Truth
105
 questions about 
Art
67
 questions about 
Feminism
574
 questions about 
Philosophy
68
 questions about 
Happiness
392
 questions about 
Religion
54
 questions about 
Medicine
58
 questions about 
Punishment
151
 questions about 
Existence
89
 questions about 
Law
34
 questions about 
Music
374
 questions about 
Logic
284
 questions about 
Mind
154
 questions about 
Sex
32
 questions about 
Sport
208
 questions about 
Science
88
 questions about 
Physics
24
 questions about 
Suicide
221
 questions about 
Value
218
 questions about 
Education
36
 questions about 
Literature
124
 questions about 
Profession
69
 questions about 
Business
1280
 questions about 
Ethics
244
 questions about 
Justice
75
 questions about 
Perception
134
 questions about 
Love
75
 questions about 
Beauty
117
 questions about 
Children
81
 questions about 
Identity
77
 questions about 
Emotion
287
 questions about 
Language
5
 questions about 
Euthanasia
43
 questions about 
Color
4
 questions about 
Economics

Question of the Day

Using ">" for material implication, (P > Q) is equivalent to each of (~ P v Q) and (Q v ~ P). So you can deduce either of those disjunctions. I think it's just a matter of convention to favor the first of them. The reader is expected to notice the equivalence of the two disjunctions.

Now, (Q v ~ P) is certainly not equivalent to (~ Q v ~ P). From Q, you can infer the first of those disjunctions but not the second. The disjunction (Q v ~ P) is equivalent to (P > Q), whereas the disjunction (~ Q v ~ P) is equivalent to (P > ~ Q) and (Q > ~ P).