Our panel of 91 professional philosophers has responded to

34
 questions about 
Music
2
 questions about 
Culture
67
 questions about 
Feminism
96
 questions about 
Time
282
 questions about 
Knowledge
77
 questions about 
Emotion
284
 questions about 
Mind
24
 questions about 
Suicide
31
 questions about 
Space
5
 questions about 
Euthanasia
58
 questions about 
Abortion
23
 questions about 
History
110
 questions about 
Biology
170
 questions about 
Freedom
81
 questions about 
Identity
27
 questions about 
Gender
151
 questions about 
Existence
88
 questions about 
Physics
208
 questions about 
Science
36
 questions about 
Literature
43
 questions about 
Color
89
 questions about 
Law
4
 questions about 
Economics
110
 questions about 
Animals
218
 questions about 
Education
75
 questions about 
Beauty
124
 questions about 
Profession
374
 questions about 
Logic
221
 questions about 
Value
68
 questions about 
Happiness
51
 questions about 
War
154
 questions about 
Sex
58
 questions about 
Punishment
69
 questions about 
Business
117
 questions about 
Children
134
 questions about 
Love
574
 questions about 
Philosophy
392
 questions about 
Religion
39
 questions about 
Race
70
 questions about 
Truth
75
 questions about 
Perception
105
 questions about 
Art
244
 questions about 
Justice
2
 questions about 
Action
54
 questions about 
Medicine
1280
 questions about 
Ethics
80
 questions about 
Death
287
 questions about 
Language
32
 questions about 
Sport

Question of the Day

Using ">" for material implication, (P > Q) is equivalent to each of (~ P v Q) and (Q v ~ P). So you can deduce either of those disjunctions. I think it's just a matter of convention to favor the first of them. The reader is expected to notice the equivalence of the two disjunctions.

Now, (Q v ~ P) is certainly not equivalent to (~ Q v ~ P). From Q, you can infer the first of those disjunctions but not the second. The disjunction (Q v ~ P) is equivalent to (P > Q), whereas the disjunction (~ Q v ~ P) is equivalent to (P > ~ Q) and (Q > ~ P).