Our panel of 91 professional philosophers has responded to

392
 questions about 
Religion
221
 questions about 
Value
117
 questions about 
Children
124
 questions about 
Profession
68
 questions about 
Happiness
54
 questions about 
Medicine
58
 questions about 
Abortion
88
 questions about 
Physics
70
 questions about 
Truth
34
 questions about 
Music
110
 questions about 
Animals
282
 questions about 
Knowledge
43
 questions about 
Color
81
 questions about 
Identity
284
 questions about 
Mind
5
 questions about 
Euthanasia
32
 questions about 
Sport
110
 questions about 
Biology
24
 questions about 
Suicide
287
 questions about 
Language
208
 questions about 
Science
89
 questions about 
Law
80
 questions about 
Death
67
 questions about 
Feminism
151
 questions about 
Existence
574
 questions about 
Philosophy
23
 questions about 
History
77
 questions about 
Emotion
39
 questions about 
Race
218
 questions about 
Education
105
 questions about 
Art
374
 questions about 
Logic
2
 questions about 
Action
31
 questions about 
Space
36
 questions about 
Literature
75
 questions about 
Perception
154
 questions about 
Sex
51
 questions about 
War
244
 questions about 
Justice
4
 questions about 
Economics
2
 questions about 
Culture
96
 questions about 
Time
75
 questions about 
Beauty
170
 questions about 
Freedom
27
 questions about 
Gender
58
 questions about 
Punishment
1280
 questions about 
Ethics
69
 questions about 
Business
134
 questions about 
Love

Question of the Day

Using ">" for material implication, (P > Q) is equivalent to each of (~ P v Q) and (Q v ~ P). So you can deduce either of those disjunctions. I think it's just a matter of convention to favor the first of them. The reader is expected to notice the equivalence of the two disjunctions.

Now, (Q v ~ P) is certainly not equivalent to (~ Q v ~ P). From Q, you can infer the first of those disjunctions but not the second. The disjunction (Q v ~ P) is equivalent to (P > Q), whereas the disjunction (~ Q v ~ P) is equivalent to (P > ~ Q) and (Q > ~ P).