Our panel of 91 professional philosophers has responded to

31
 questions about 
Space
110
 questions about 
Animals
27
 questions about 
Gender
244
 questions about 
Justice
58
 questions about 
Abortion
1280
 questions about 
Ethics
34
 questions about 
Music
58
 questions about 
Punishment
67
 questions about 
Feminism
75
 questions about 
Perception
75
 questions about 
Beauty
282
 questions about 
Knowledge
54
 questions about 
Medicine
77
 questions about 
Emotion
170
 questions about 
Freedom
69
 questions about 
Business
81
 questions about 
Identity
374
 questions about 
Logic
110
 questions about 
Biology
392
 questions about 
Religion
68
 questions about 
Happiness
24
 questions about 
Suicide
218
 questions about 
Education
43
 questions about 
Color
2
 questions about 
Action
574
 questions about 
Philosophy
117
 questions about 
Children
32
 questions about 
Sport
80
 questions about 
Death
5
 questions about 
Euthanasia
51
 questions about 
War
89
 questions about 
Law
96
 questions about 
Time
4
 questions about 
Economics
36
 questions about 
Literature
221
 questions about 
Value
39
 questions about 
Race
2
 questions about 
Culture
284
 questions about 
Mind
151
 questions about 
Existence
208
 questions about 
Science
287
 questions about 
Language
105
 questions about 
Art
88
 questions about 
Physics
134
 questions about 
Love
154
 questions about 
Sex
70
 questions about 
Truth
23
 questions about 
History
124
 questions about 
Profession

Question of the Day

Using ">" for material implication, (P > Q) is equivalent to each of (~ P v Q) and (Q v ~ P). So you can deduce either of those disjunctions. I think it's just a matter of convention to favor the first of them. The reader is expected to notice the equivalence of the two disjunctions.

Now, (Q v ~ P) is certainly not equivalent to (~ Q v ~ P). From Q, you can infer the first of those disjunctions but not the second. The disjunction (Q v ~ P) is equivalent to (P > Q), whereas the disjunction (~ Q v ~ P) is equivalent to (P > ~ Q) and (Q > ~ P).