Our panel of 91 professional philosophers has responded to

70
 questions about 
Truth
574
 questions about 
Philosophy
392
 questions about 
Religion
124
 questions about 
Profession
110
 questions about 
Biology
75
 questions about 
Beauty
221
 questions about 
Value
154
 questions about 
Sex
81
 questions about 
Identity
69
 questions about 
Business
88
 questions about 
Physics
39
 questions about 
Race
218
 questions about 
Education
151
 questions about 
Existence
27
 questions about 
Gender
23
 questions about 
History
75
 questions about 
Perception
77
 questions about 
Emotion
96
 questions about 
Time
374
 questions about 
Logic
54
 questions about 
Medicine
68
 questions about 
Happiness
34
 questions about 
Music
2
 questions about 
Action
43
 questions about 
Color
67
 questions about 
Feminism
117
 questions about 
Children
4
 questions about 
Economics
80
 questions about 
Death
51
 questions about 
War
89
 questions about 
Law
36
 questions about 
Literature
110
 questions about 
Animals
134
 questions about 
Love
208
 questions about 
Science
31
 questions about 
Space
58
 questions about 
Punishment
284
 questions about 
Mind
1280
 questions about 
Ethics
105
 questions about 
Art
24
 questions about 
Suicide
2
 questions about 
Culture
244
 questions about 
Justice
287
 questions about 
Language
282
 questions about 
Knowledge
5
 questions about 
Euthanasia
58
 questions about 
Abortion
32
 questions about 
Sport
170
 questions about 
Freedom

Question of the Day

Using ">" for material implication, (P > Q) is equivalent to each of (~ P v Q) and (Q v ~ P). So you can deduce either of those disjunctions. I think it's just a matter of convention to favor the first of them. The reader is expected to notice the equivalence of the two disjunctions.

Now, (Q v ~ P) is certainly not equivalent to (~ Q v ~ P). From Q, you can infer the first of those disjunctions but not the second. The disjunction (Q v ~ P) is equivalent to (P > Q), whereas the disjunction (~ Q v ~ P) is equivalent to (P > ~ Q) and (Q > ~ P).