Our panel of 91 professional philosophers has responded to

105
 questions about 
Art
75
 questions about 
Perception
151
 questions about 
Existence
244
 questions about 
Justice
110
 questions about 
Biology
27
 questions about 
Gender
43
 questions about 
Color
58
 questions about 
Punishment
77
 questions about 
Emotion
58
 questions about 
Abortion
134
 questions about 
Love
2
 questions about 
Culture
67
 questions about 
Feminism
154
 questions about 
Sex
88
 questions about 
Physics
39
 questions about 
Race
81
 questions about 
Identity
68
 questions about 
Happiness
574
 questions about 
Philosophy
221
 questions about 
Value
69
 questions about 
Business
34
 questions about 
Music
284
 questions about 
Mind
2
 questions about 
Action
1280
 questions about 
Ethics
287
 questions about 
Language
96
 questions about 
Time
51
 questions about 
War
218
 questions about 
Education
31
 questions about 
Space
36
 questions about 
Literature
70
 questions about 
Truth
374
 questions about 
Logic
392
 questions about 
Religion
54
 questions about 
Medicine
110
 questions about 
Animals
32
 questions about 
Sport
24
 questions about 
Suicide
23
 questions about 
History
75
 questions about 
Beauty
89
 questions about 
Law
170
 questions about 
Freedom
208
 questions about 
Science
4
 questions about 
Economics
5
 questions about 
Euthanasia
124
 questions about 
Profession
117
 questions about 
Children
282
 questions about 
Knowledge
80
 questions about 
Death

Question of the Day

Using ">" for material implication, (P > Q) is equivalent to each of (~ P v Q) and (Q v ~ P). So you can deduce either of those disjunctions. I think it's just a matter of convention to favor the first of them. The reader is expected to notice the equivalence of the two disjunctions.

Now, (Q v ~ P) is certainly not equivalent to (~ Q v ~ P). From Q, you can infer the first of those disjunctions but not the second. The disjunction (Q v ~ P) is equivalent to (P > Q), whereas the disjunction (~ Q v ~ P) is equivalent to (P > ~ Q) and (Q > ~ P).