Our panel of 91 professional philosophers has responded to

218
 questions about 
Education
392
 questions about 
Religion
284
 questions about 
Mind
2
 questions about 
Action
75
 questions about 
Perception
96
 questions about 
Time
374
 questions about 
Logic
36
 questions about 
Literature
208
 questions about 
Science
80
 questions about 
Death
134
 questions about 
Love
89
 questions about 
Law
24
 questions about 
Suicide
43
 questions about 
Color
110
 questions about 
Biology
282
 questions about 
Knowledge
77
 questions about 
Emotion
124
 questions about 
Profession
32
 questions about 
Sport
574
 questions about 
Philosophy
151
 questions about 
Existence
81
 questions about 
Identity
54
 questions about 
Medicine
105
 questions about 
Art
5
 questions about 
Euthanasia
69
 questions about 
Business
110
 questions about 
Animals
68
 questions about 
Happiness
58
 questions about 
Abortion
287
 questions about 
Language
34
 questions about 
Music
70
 questions about 
Truth
67
 questions about 
Feminism
39
 questions about 
Race
154
 questions about 
Sex
27
 questions about 
Gender
88
 questions about 
Physics
1280
 questions about 
Ethics
58
 questions about 
Punishment
117
 questions about 
Children
23
 questions about 
History
31
 questions about 
Space
4
 questions about 
Economics
170
 questions about 
Freedom
51
 questions about 
War
244
 questions about 
Justice
75
 questions about 
Beauty
221
 questions about 
Value
2
 questions about 
Culture

Question of the Day

Using ">" for material implication, (P > Q) is equivalent to each of (~ P v Q) and (Q v ~ P). So you can deduce either of those disjunctions. I think it's just a matter of convention to favor the first of them. The reader is expected to notice the equivalence of the two disjunctions.

Now, (Q v ~ P) is certainly not equivalent to (~ Q v ~ P). From Q, you can infer the first of those disjunctions but not the second. The disjunction (Q v ~ P) is equivalent to (P > Q), whereas the disjunction (~ Q v ~ P) is equivalent to (P > ~ Q) and (Q > ~ P).