Our panel of 91 professional philosophers has responded to

43
 questions about 
Color
96
 questions about 
Time
24
 questions about 
Suicide
208
 questions about 
Science
51
 questions about 
War
392
 questions about 
Religion
80
 questions about 
Death
4
 questions about 
Economics
68
 questions about 
Happiness
2
 questions about 
Culture
154
 questions about 
Sex
124
 questions about 
Profession
77
 questions about 
Emotion
2
 questions about 
Action
88
 questions about 
Physics
5
 questions about 
Euthanasia
218
 questions about 
Education
284
 questions about 
Mind
151
 questions about 
Existence
282
 questions about 
Knowledge
221
 questions about 
Value
27
 questions about 
Gender
1280
 questions about 
Ethics
105
 questions about 
Art
574
 questions about 
Philosophy
58
 questions about 
Punishment
374
 questions about 
Logic
244
 questions about 
Justice
39
 questions about 
Race
32
 questions about 
Sport
117
 questions about 
Children
58
 questions about 
Abortion
287
 questions about 
Language
134
 questions about 
Love
75
 questions about 
Beauty
54
 questions about 
Medicine
23
 questions about 
History
75
 questions about 
Perception
170
 questions about 
Freedom
81
 questions about 
Identity
70
 questions about 
Truth
89
 questions about 
Law
110
 questions about 
Biology
31
 questions about 
Space
110
 questions about 
Animals
36
 questions about 
Literature
34
 questions about 
Music
67
 questions about 
Feminism
69
 questions about 
Business

Question of the Day

Using ">" for material implication, (P > Q) is equivalent to each of (~ P v Q) and (Q v ~ P). So you can deduce either of those disjunctions. I think it's just a matter of convention to favor the first of them. The reader is expected to notice the equivalence of the two disjunctions.

Now, (Q v ~ P) is certainly not equivalent to (~ Q v ~ P). From Q, you can infer the first of those disjunctions but not the second. The disjunction (Q v ~ P) is equivalent to (P > Q), whereas the disjunction (~ Q v ~ P) is equivalent to (P > ~ Q) and (Q > ~ P).