Our panel of 91 professional philosophers has responded to

68
 questions about 
Happiness
32
 questions about 
Sport
2
 questions about 
Action
36
 questions about 
Literature
574
 questions about 
Philosophy
4
 questions about 
Economics
221
 questions about 
Value
31
 questions about 
Space
1280
 questions about 
Ethics
43
 questions about 
Color
75
 questions about 
Perception
2
 questions about 
Culture
89
 questions about 
Law
117
 questions about 
Children
96
 questions about 
Time
39
 questions about 
Race
54
 questions about 
Medicine
70
 questions about 
Truth
24
 questions about 
Suicide
218
 questions about 
Education
5
 questions about 
Euthanasia
282
 questions about 
Knowledge
23
 questions about 
History
105
 questions about 
Art
27
 questions about 
Gender
287
 questions about 
Language
284
 questions about 
Mind
81
 questions about 
Identity
374
 questions about 
Logic
67
 questions about 
Feminism
110
 questions about 
Biology
244
 questions about 
Justice
51
 questions about 
War
154
 questions about 
Sex
58
 questions about 
Punishment
392
 questions about 
Religion
80
 questions about 
Death
34
 questions about 
Music
208
 questions about 
Science
151
 questions about 
Existence
75
 questions about 
Beauty
88
 questions about 
Physics
58
 questions about 
Abortion
124
 questions about 
Profession
134
 questions about 
Love
69
 questions about 
Business
170
 questions about 
Freedom
77
 questions about 
Emotion
110
 questions about 
Animals

Question of the Day

Using ">" for material implication, (P > Q) is equivalent to each of (~ P v Q) and (Q v ~ P). So you can deduce either of those disjunctions. I think it's just a matter of convention to favor the first of them. The reader is expected to notice the equivalence of the two disjunctions.

Now, (Q v ~ P) is certainly not equivalent to (~ Q v ~ P). From Q, you can infer the first of those disjunctions but not the second. The disjunction (Q v ~ P) is equivalent to (P > Q), whereas the disjunction (~ Q v ~ P) is equivalent to (P > ~ Q) and (Q > ~ P).