Our panel of 91 professional philosophers has responded to

134
 questions about 
Love
96
 questions about 
Time
374
 questions about 
Logic
105
 questions about 
Art
51
 questions about 
War
36
 questions about 
Literature
69
 questions about 
Business
154
 questions about 
Sex
39
 questions about 
Race
284
 questions about 
Mind
81
 questions about 
Identity
77
 questions about 
Emotion
1280
 questions about 
Ethics
68
 questions about 
Happiness
75
 questions about 
Beauty
282
 questions about 
Knowledge
58
 questions about 
Punishment
2
 questions about 
Action
58
 questions about 
Abortion
34
 questions about 
Music
170
 questions about 
Freedom
80
 questions about 
Death
221
 questions about 
Value
151
 questions about 
Existence
208
 questions about 
Science
124
 questions about 
Profession
392
 questions about 
Religion
244
 questions about 
Justice
110
 questions about 
Biology
110
 questions about 
Animals
117
 questions about 
Children
5
 questions about 
Euthanasia
24
 questions about 
Suicide
89
 questions about 
Law
31
 questions about 
Space
54
 questions about 
Medicine
32
 questions about 
Sport
67
 questions about 
Feminism
88
 questions about 
Physics
23
 questions about 
History
75
 questions about 
Perception
2
 questions about 
Culture
574
 questions about 
Philosophy
4
 questions about 
Economics
70
 questions about 
Truth
27
 questions about 
Gender
43
 questions about 
Color
287
 questions about 
Language
218
 questions about 
Education

Question of the Day

Using ">" for material implication, (P > Q) is equivalent to each of (~ P v Q) and (Q v ~ P). So you can deduce either of those disjunctions. I think it's just a matter of convention to favor the first of them. The reader is expected to notice the equivalence of the two disjunctions.

Now, (Q v ~ P) is certainly not equivalent to (~ Q v ~ P). From Q, you can infer the first of those disjunctions but not the second. The disjunction (Q v ~ P) is equivalent to (P > Q), whereas the disjunction (~ Q v ~ P) is equivalent to (P > ~ Q) and (Q > ~ P).