Our panel of 91 professional philosophers has responded to

105
 questions about 
Art
88
 questions about 
Physics
392
 questions about 
Religion
4
 questions about 
Economics
5
 questions about 
Euthanasia
110
 questions about 
Animals
51
 questions about 
War
284
 questions about 
Mind
221
 questions about 
Value
24
 questions about 
Suicide
67
 questions about 
Feminism
34
 questions about 
Music
70
 questions about 
Truth
68
 questions about 
Happiness
43
 questions about 
Color
77
 questions about 
Emotion
81
 questions about 
Identity
96
 questions about 
Time
110
 questions about 
Biology
69
 questions about 
Business
2
 questions about 
Action
151
 questions about 
Existence
574
 questions about 
Philosophy
154
 questions about 
Sex
32
 questions about 
Sport
282
 questions about 
Knowledge
124
 questions about 
Profession
1280
 questions about 
Ethics
23
 questions about 
History
218
 questions about 
Education
170
 questions about 
Freedom
58
 questions about 
Abortion
39
 questions about 
Race
2
 questions about 
Culture
54
 questions about 
Medicine
31
 questions about 
Space
75
 questions about 
Perception
80
 questions about 
Death
27
 questions about 
Gender
75
 questions about 
Beauty
287
 questions about 
Language
58
 questions about 
Punishment
244
 questions about 
Justice
208
 questions about 
Science
117
 questions about 
Children
134
 questions about 
Love
89
 questions about 
Law
36
 questions about 
Literature
374
 questions about 
Logic

Question of the Day

Using ">" for material implication, (P > Q) is equivalent to each of (~ P v Q) and (Q v ~ P). So you can deduce either of those disjunctions. I think it's just a matter of convention to favor the first of them. The reader is expected to notice the equivalence of the two disjunctions.

Now, (Q v ~ P) is certainly not equivalent to (~ Q v ~ P). From Q, you can infer the first of those disjunctions but not the second. The disjunction (Q v ~ P) is equivalent to (P > Q), whereas the disjunction (~ Q v ~ P) is equivalent to (P > ~ Q) and (Q > ~ P).