Our panel of 91 professional philosophers has responded to

23
 questions about 
History
31
 questions about 
Space
89
 questions about 
Law
221
 questions about 
Value
284
 questions about 
Mind
2
 questions about 
Action
54
 questions about 
Medicine
88
 questions about 
Physics
154
 questions about 
Sex
81
 questions about 
Identity
574
 questions about 
Philosophy
34
 questions about 
Music
124
 questions about 
Profession
117
 questions about 
Children
43
 questions about 
Color
51
 questions about 
War
151
 questions about 
Existence
374
 questions about 
Logic
68
 questions about 
Happiness
24
 questions about 
Suicide
58
 questions about 
Abortion
110
 questions about 
Animals
77
 questions about 
Emotion
2
 questions about 
Culture
218
 questions about 
Education
110
 questions about 
Biology
75
 questions about 
Perception
392
 questions about 
Religion
208
 questions about 
Science
105
 questions about 
Art
80
 questions about 
Death
1280
 questions about 
Ethics
4
 questions about 
Economics
70
 questions about 
Truth
58
 questions about 
Punishment
244
 questions about 
Justice
32
 questions about 
Sport
39
 questions about 
Race
96
 questions about 
Time
287
 questions about 
Language
134
 questions about 
Love
5
 questions about 
Euthanasia
27
 questions about 
Gender
75
 questions about 
Beauty
36
 questions about 
Literature
170
 questions about 
Freedom
69
 questions about 
Business
67
 questions about 
Feminism
282
 questions about 
Knowledge

Question of the Day

Using ">" for material implication, (P > Q) is equivalent to each of (~ P v Q) and (Q v ~ P). So you can deduce either of those disjunctions. I think it's just a matter of convention to favor the first of them. The reader is expected to notice the equivalence of the two disjunctions.

Now, (Q v ~ P) is certainly not equivalent to (~ Q v ~ P). From Q, you can infer the first of those disjunctions but not the second. The disjunction (Q v ~ P) is equivalent to (P > Q), whereas the disjunction (~ Q v ~ P) is equivalent to (P > ~ Q) and (Q > ~ P).