Our panel of 91 professional philosophers has responded to

208
 questions about 
Science
81
 questions about 
Identity
105
 questions about 
Art
58
 questions about 
Punishment
221
 questions about 
Value
282
 questions about 
Knowledge
75
 questions about 
Beauty
88
 questions about 
Physics
27
 questions about 
Gender
218
 questions about 
Education
77
 questions about 
Emotion
54
 questions about 
Medicine
4
 questions about 
Economics
75
 questions about 
Perception
43
 questions about 
Color
51
 questions about 
War
5
 questions about 
Euthanasia
287
 questions about 
Language
80
 questions about 
Death
110
 questions about 
Biology
96
 questions about 
Time
154
 questions about 
Sex
69
 questions about 
Business
89
 questions about 
Law
574
 questions about 
Philosophy
67
 questions about 
Feminism
244
 questions about 
Justice
70
 questions about 
Truth
39
 questions about 
Race
374
 questions about 
Logic
24
 questions about 
Suicide
68
 questions about 
Happiness
170
 questions about 
Freedom
134
 questions about 
Love
1280
 questions about 
Ethics
34
 questions about 
Music
2
 questions about 
Action
32
 questions about 
Sport
284
 questions about 
Mind
124
 questions about 
Profession
110
 questions about 
Animals
58
 questions about 
Abortion
2
 questions about 
Culture
392
 questions about 
Religion
151
 questions about 
Existence
117
 questions about 
Children
23
 questions about 
History
36
 questions about 
Literature
31
 questions about 
Space

Question of the Day

Using ">" for material implication, (P > Q) is equivalent to each of (~ P v Q) and (Q v ~ P). So you can deduce either of those disjunctions. I think it's just a matter of convention to favor the first of them. The reader is expected to notice the equivalence of the two disjunctions.

Now, (Q v ~ P) is certainly not equivalent to (~ Q v ~ P). From Q, you can infer the first of those disjunctions but not the second. The disjunction (Q v ~ P) is equivalent to (P > Q), whereas the disjunction (~ Q v ~ P) is equivalent to (P > ~ Q) and (Q > ~ P).