Our panel of 91 professional philosophers has responded to

89
 questions about 
Law
110
 questions about 
Biology
36
 questions about 
Literature
32
 questions about 
Sport
244
 questions about 
Justice
221
 questions about 
Value
392
 questions about 
Religion
374
 questions about 
Logic
67
 questions about 
Feminism
574
 questions about 
Philosophy
81
 questions about 
Identity
151
 questions about 
Existence
80
 questions about 
Death
43
 questions about 
Color
124
 questions about 
Profession
110
 questions about 
Animals
170
 questions about 
Freedom
24
 questions about 
Suicide
77
 questions about 
Emotion
58
 questions about 
Abortion
58
 questions about 
Punishment
39
 questions about 
Race
51
 questions about 
War
68
 questions about 
Happiness
69
 questions about 
Business
154
 questions about 
Sex
96
 questions about 
Time
75
 questions about 
Perception
4
 questions about 
Economics
218
 questions about 
Education
287
 questions about 
Language
134
 questions about 
Love
105
 questions about 
Art
282
 questions about 
Knowledge
2
 questions about 
Culture
284
 questions about 
Mind
117
 questions about 
Children
1280
 questions about 
Ethics
75
 questions about 
Beauty
27
 questions about 
Gender
2
 questions about 
Action
5
 questions about 
Euthanasia
23
 questions about 
History
31
 questions about 
Space
88
 questions about 
Physics
208
 questions about 
Science
54
 questions about 
Medicine
70
 questions about 
Truth
34
 questions about 
Music

Question of the Day

Using ">" for material implication, (P > Q) is equivalent to each of (~ P v Q) and (Q v ~ P). So you can deduce either of those disjunctions. I think it's just a matter of convention to favor the first of them. The reader is expected to notice the equivalence of the two disjunctions.

Now, (Q v ~ P) is certainly not equivalent to (~ Q v ~ P). From Q, you can infer the first of those disjunctions but not the second. The disjunction (Q v ~ P) is equivalent to (P > Q), whereas the disjunction (~ Q v ~ P) is equivalent to (P > ~ Q) and (Q > ~ P).