Our panel of 91 professional philosophers has responded to

31
 questions about 
Space
170
 questions about 
Freedom
27
 questions about 
Gender
154
 questions about 
Sex
68
 questions about 
Happiness
221
 questions about 
Value
23
 questions about 
History
244
 questions about 
Justice
58
 questions about 
Punishment
39
 questions about 
Race
43
 questions about 
Color
88
 questions about 
Physics
96
 questions about 
Time
287
 questions about 
Language
89
 questions about 
Law
134
 questions about 
Love
282
 questions about 
Knowledge
208
 questions about 
Science
374
 questions about 
Logic
151
 questions about 
Existence
2
 questions about 
Action
81
 questions about 
Identity
2
 questions about 
Culture
5
 questions about 
Euthanasia
54
 questions about 
Medicine
69
 questions about 
Business
70
 questions about 
Truth
117
 questions about 
Children
124
 questions about 
Profession
24
 questions about 
Suicide
51
 questions about 
War
392
 questions about 
Religion
218
 questions about 
Education
67
 questions about 
Feminism
110
 questions about 
Animals
75
 questions about 
Beauty
284
 questions about 
Mind
110
 questions about 
Biology
77
 questions about 
Emotion
1280
 questions about 
Ethics
75
 questions about 
Perception
4
 questions about 
Economics
36
 questions about 
Literature
80
 questions about 
Death
32
 questions about 
Sport
58
 questions about 
Abortion
574
 questions about 
Philosophy
105
 questions about 
Art
34
 questions about 
Music

Question of the Day

Using ">" for material implication, (P > Q) is equivalent to each of (~ P v Q) and (Q v ~ P). So you can deduce either of those disjunctions. I think it's just a matter of convention to favor the first of them. The reader is expected to notice the equivalence of the two disjunctions.

Now, (Q v ~ P) is certainly not equivalent to (~ Q v ~ P). From Q, you can infer the first of those disjunctions but not the second. The disjunction (Q v ~ P) is equivalent to (P > Q), whereas the disjunction (~ Q v ~ P) is equivalent to (P > ~ Q) and (Q > ~ P).