Our panel of 91 professional philosophers has responded to

77
 questions about 
Emotion
124
 questions about 
Profession
81
 questions about 
Identity
244
 questions about 
Justice
43
 questions about 
Color
23
 questions about 
History
32
 questions about 
Sport
80
 questions about 
Death
36
 questions about 
Literature
70
 questions about 
Truth
154
 questions about 
Sex
96
 questions about 
Time
282
 questions about 
Knowledge
67
 questions about 
Feminism
221
 questions about 
Value
110
 questions about 
Animals
75
 questions about 
Perception
34
 questions about 
Music
2
 questions about 
Culture
105
 questions about 
Art
89
 questions about 
Law
1280
 questions about 
Ethics
58
 questions about 
Abortion
54
 questions about 
Medicine
117
 questions about 
Children
574
 questions about 
Philosophy
88
 questions about 
Physics
5
 questions about 
Euthanasia
2
 questions about 
Action
27
 questions about 
Gender
284
 questions about 
Mind
75
 questions about 
Beauty
51
 questions about 
War
151
 questions about 
Existence
287
 questions about 
Language
134
 questions about 
Love
58
 questions about 
Punishment
68
 questions about 
Happiness
110
 questions about 
Biology
374
 questions about 
Logic
39
 questions about 
Race
4
 questions about 
Economics
170
 questions about 
Freedom
392
 questions about 
Religion
24
 questions about 
Suicide
218
 questions about 
Education
31
 questions about 
Space
208
 questions about 
Science
69
 questions about 
Business

Question of the Day

Using ">" for material implication, (P > Q) is equivalent to each of (~ P v Q) and (Q v ~ P). So you can deduce either of those disjunctions. I think it's just a matter of convention to favor the first of them. The reader is expected to notice the equivalence of the two disjunctions.

Now, (Q v ~ P) is certainly not equivalent to (~ Q v ~ P). From Q, you can infer the first of those disjunctions but not the second. The disjunction (Q v ~ P) is equivalent to (P > Q), whereas the disjunction (~ Q v ~ P) is equivalent to (P > ~ Q) and (Q > ~ P).