Our panel of 91 professional philosophers has responded to

54
 questions about 
Medicine
43
 questions about 
Color
36
 questions about 
Literature
89
 questions about 
Law
77
 questions about 
Emotion
374
 questions about 
Logic
24
 questions about 
Suicide
32
 questions about 
Sport
31
 questions about 
Space
574
 questions about 
Philosophy
208
 questions about 
Science
2
 questions about 
Action
80
 questions about 
Death
58
 questions about 
Abortion
96
 questions about 
Time
23
 questions about 
History
282
 questions about 
Knowledge
110
 questions about 
Animals
5
 questions about 
Euthanasia
151
 questions about 
Existence
117
 questions about 
Children
134
 questions about 
Love
1280
 questions about 
Ethics
68
 questions about 
Happiness
392
 questions about 
Religion
69
 questions about 
Business
284
 questions about 
Mind
4
 questions about 
Economics
2
 questions about 
Culture
75
 questions about 
Beauty
67
 questions about 
Feminism
154
 questions about 
Sex
27
 questions about 
Gender
221
 questions about 
Value
110
 questions about 
Biology
75
 questions about 
Perception
70
 questions about 
Truth
105
 questions about 
Art
124
 questions about 
Profession
218
 questions about 
Education
287
 questions about 
Language
244
 questions about 
Justice
58
 questions about 
Punishment
88
 questions about 
Physics
170
 questions about 
Freedom
81
 questions about 
Identity
39
 questions about 
Race
34
 questions about 
Music
51
 questions about 
War

Question of the Day

Using ">" for material implication, (P > Q) is equivalent to each of (~ P v Q) and (Q v ~ P). So you can deduce either of those disjunctions. I think it's just a matter of convention to favor the first of them. The reader is expected to notice the equivalence of the two disjunctions.

Now, (Q v ~ P) is certainly not equivalent to (~ Q v ~ P). From Q, you can infer the first of those disjunctions but not the second. The disjunction (Q v ~ P) is equivalent to (P > Q), whereas the disjunction (~ Q v ~ P) is equivalent to (P > ~ Q) and (Q > ~ P).