Our panel of 91 professional philosophers has responded to

374
 questions about 
Logic
88
 questions about 
Physics
134
 questions about 
Love
70
 questions about 
Truth
54
 questions about 
Medicine
124
 questions about 
Profession
282
 questions about 
Knowledge
287
 questions about 
Language
27
 questions about 
Gender
39
 questions about 
Race
96
 questions about 
Time
105
 questions about 
Art
67
 questions about 
Feminism
69
 questions about 
Business
218
 questions about 
Education
5
 questions about 
Euthanasia
80
 questions about 
Death
58
 questions about 
Abortion
89
 questions about 
Law
51
 questions about 
War
75
 questions about 
Beauty
244
 questions about 
Justice
110
 questions about 
Biology
23
 questions about 
History
75
 questions about 
Perception
1280
 questions about 
Ethics
284
 questions about 
Mind
68
 questions about 
Happiness
36
 questions about 
Literature
43
 questions about 
Color
2
 questions about 
Culture
34
 questions about 
Music
208
 questions about 
Science
24
 questions about 
Suicide
58
 questions about 
Punishment
31
 questions about 
Space
221
 questions about 
Value
32
 questions about 
Sport
170
 questions about 
Freedom
81
 questions about 
Identity
2
 questions about 
Action
151
 questions about 
Existence
392
 questions about 
Religion
4
 questions about 
Economics
77
 questions about 
Emotion
117
 questions about 
Children
110
 questions about 
Animals
574
 questions about 
Philosophy
154
 questions about 
Sex

Question of the Day

Using ">" for material implication, (P > Q) is equivalent to each of (~ P v Q) and (Q v ~ P). So you can deduce either of those disjunctions. I think it's just a matter of convention to favor the first of them. The reader is expected to notice the equivalence of the two disjunctions.

Now, (Q v ~ P) is certainly not equivalent to (~ Q v ~ P). From Q, you can infer the first of those disjunctions but not the second. The disjunction (Q v ~ P) is equivalent to (P > Q), whereas the disjunction (~ Q v ~ P) is equivalent to (P > ~ Q) and (Q > ~ P).