Our panel of 91 professional philosophers has responded to

23
 questions about 
History
24
 questions about 
Suicide
124
 questions about 
Profession
58
 questions about 
Abortion
574
 questions about 
Philosophy
68
 questions about 
Happiness
282
 questions about 
Knowledge
134
 questions about 
Love
32
 questions about 
Sport
89
 questions about 
Law
110
 questions about 
Animals
39
 questions about 
Race
287
 questions about 
Language
110
 questions about 
Biology
154
 questions about 
Sex
208
 questions about 
Science
51
 questions about 
War
1280
 questions about 
Ethics
75
 questions about 
Beauty
80
 questions about 
Death
218
 questions about 
Education
2
 questions about 
Culture
374
 questions about 
Logic
244
 questions about 
Justice
392
 questions about 
Religion
2
 questions about 
Action
54
 questions about 
Medicine
70
 questions about 
Truth
170
 questions about 
Freedom
34
 questions about 
Music
96
 questions about 
Time
75
 questions about 
Perception
27
 questions about 
Gender
69
 questions about 
Business
31
 questions about 
Space
67
 questions about 
Feminism
81
 questions about 
Identity
58
 questions about 
Punishment
117
 questions about 
Children
4
 questions about 
Economics
105
 questions about 
Art
88
 questions about 
Physics
43
 questions about 
Color
77
 questions about 
Emotion
151
 questions about 
Existence
221
 questions about 
Value
284
 questions about 
Mind
5
 questions about 
Euthanasia
36
 questions about 
Literature

Question of the Day

Using ">" for material implication, (P > Q) is equivalent to each of (~ P v Q) and (Q v ~ P). So you can deduce either of those disjunctions. I think it's just a matter of convention to favor the first of them. The reader is expected to notice the equivalence of the two disjunctions.

Now, (Q v ~ P) is certainly not equivalent to (~ Q v ~ P). From Q, you can infer the first of those disjunctions but not the second. The disjunction (Q v ~ P) is equivalent to (P > Q), whereas the disjunction (~ Q v ~ P) is equivalent to (P > ~ Q) and (Q > ~ P).