Our panel of 91 professional philosophers has responded to

88
 questions about 
Physics
36
 questions about 
Literature
1280
 questions about 
Ethics
39
 questions about 
Race
117
 questions about 
Children
218
 questions about 
Education
574
 questions about 
Philosophy
80
 questions about 
Death
110
 questions about 
Animals
75
 questions about 
Perception
134
 questions about 
Love
70
 questions about 
Truth
89
 questions about 
Law
208
 questions about 
Science
43
 questions about 
Color
23
 questions about 
History
392
 questions about 
Religion
75
 questions about 
Beauty
154
 questions about 
Sex
81
 questions about 
Identity
105
 questions about 
Art
287
 questions about 
Language
96
 questions about 
Time
374
 questions about 
Logic
51
 questions about 
War
77
 questions about 
Emotion
110
 questions about 
Biology
151
 questions about 
Existence
34
 questions about 
Music
58
 questions about 
Abortion
24
 questions about 
Suicide
58
 questions about 
Punishment
4
 questions about 
Economics
67
 questions about 
Feminism
54
 questions about 
Medicine
5
 questions about 
Euthanasia
124
 questions about 
Profession
69
 questions about 
Business
2
 questions about 
Action
170
 questions about 
Freedom
221
 questions about 
Value
282
 questions about 
Knowledge
27
 questions about 
Gender
32
 questions about 
Sport
284
 questions about 
Mind
68
 questions about 
Happiness
2
 questions about 
Culture
244
 questions about 
Justice
31
 questions about 
Space

Question of the Day

Using ">" for material implication, (P > Q) is equivalent to each of (~ P v Q) and (Q v ~ P). So you can deduce either of those disjunctions. I think it's just a matter of convention to favor the first of them. The reader is expected to notice the equivalence of the two disjunctions.

Now, (Q v ~ P) is certainly not equivalent to (~ Q v ~ P). From Q, you can infer the first of those disjunctions but not the second. The disjunction (Q v ~ P) is equivalent to (P > Q), whereas the disjunction (~ Q v ~ P) is equivalent to (P > ~ Q) and (Q > ~ P).