Our panel of 91 professional philosophers has responded to

51
 questions about 
War
244
 questions about 
Justice
54
 questions about 
Medicine
170
 questions about 
Freedom
2
 questions about 
Action
75
 questions about 
Perception
284
 questions about 
Mind
36
 questions about 
Literature
392
 questions about 
Religion
5
 questions about 
Euthanasia
89
 questions about 
Law
68
 questions about 
Happiness
34
 questions about 
Music
110
 questions about 
Biology
70
 questions about 
Truth
218
 questions about 
Education
282
 questions about 
Knowledge
39
 questions about 
Race
134
 questions about 
Love
32
 questions about 
Sport
24
 questions about 
Suicide
154
 questions about 
Sex
1280
 questions about 
Ethics
58
 questions about 
Abortion
105
 questions about 
Art
27
 questions about 
Gender
124
 questions about 
Profession
75
 questions about 
Beauty
80
 questions about 
Death
31
 questions about 
Space
574
 questions about 
Philosophy
208
 questions about 
Science
58
 questions about 
Punishment
2
 questions about 
Culture
81
 questions about 
Identity
67
 questions about 
Feminism
151
 questions about 
Existence
88
 questions about 
Physics
23
 questions about 
History
287
 questions about 
Language
77
 questions about 
Emotion
69
 questions about 
Business
117
 questions about 
Children
43
 questions about 
Color
221
 questions about 
Value
96
 questions about 
Time
110
 questions about 
Animals
374
 questions about 
Logic
4
 questions about 
Economics

Question of the Day

Using ">" for material implication, (P > Q) is equivalent to each of (~ P v Q) and (Q v ~ P). So you can deduce either of those disjunctions. I think it's just a matter of convention to favor the first of them. The reader is expected to notice the equivalence of the two disjunctions.

Now, (Q v ~ P) is certainly not equivalent to (~ Q v ~ P). From Q, you can infer the first of those disjunctions but not the second. The disjunction (Q v ~ P) is equivalent to (P > Q), whereas the disjunction (~ Q v ~ P) is equivalent to (P > ~ Q) and (Q > ~ P).