Our panel of 91 professional philosophers has responded to

374
 questions about 
Logic
80
 questions about 
Death
105
 questions about 
Art
70
 questions about 
Truth
27
 questions about 
Gender
5
 questions about 
Euthanasia
58
 questions about 
Punishment
77
 questions about 
Emotion
23
 questions about 
History
2
 questions about 
Culture
2
 questions about 
Action
36
 questions about 
Literature
51
 questions about 
War
574
 questions about 
Philosophy
43
 questions about 
Color
81
 questions about 
Identity
88
 questions about 
Physics
89
 questions about 
Law
1280
 questions about 
Ethics
170
 questions about 
Freedom
69
 questions about 
Business
110
 questions about 
Biology
287
 questions about 
Language
218
 questions about 
Education
68
 questions about 
Happiness
284
 questions about 
Mind
75
 questions about 
Beauty
134
 questions about 
Love
124
 questions about 
Profession
54
 questions about 
Medicine
75
 questions about 
Perception
34
 questions about 
Music
58
 questions about 
Abortion
151
 questions about 
Existence
208
 questions about 
Science
24
 questions about 
Suicide
117
 questions about 
Children
4
 questions about 
Economics
244
 questions about 
Justice
154
 questions about 
Sex
96
 questions about 
Time
31
 questions about 
Space
32
 questions about 
Sport
392
 questions about 
Religion
39
 questions about 
Race
67
 questions about 
Feminism
221
 questions about 
Value
110
 questions about 
Animals
282
 questions about 
Knowledge

Question of the Day

There is a finite number of arrangements of letters; thus there is a finite number of definitions.

Is that true if we're allowed to use each letter an increasing number of times? If our stock of letter tokens increases without limit, then can't the number (and length) of our definitions also increase without limit? Certainly the names of the numbers will tend to get longer as the numbers they name increase, and those names will reuse letters to an ever-increasing degree.