Our panel of 91 professional philosophers has responded to

124
 questions about 
Profession
23
 questions about 
History
374
 questions about 
Logic
96
 questions about 
Time
105
 questions about 
Art
110
 questions about 
Biology
39
 questions about 
Race
284
 questions about 
Mind
208
 questions about 
Science
244
 questions about 
Justice
1280
 questions about 
Ethics
4
 questions about 
Economics
110
 questions about 
Animals
54
 questions about 
Medicine
43
 questions about 
Color
68
 questions about 
Happiness
32
 questions about 
Sport
24
 questions about 
Suicide
154
 questions about 
Sex
67
 questions about 
Feminism
5
 questions about 
Euthanasia
89
 questions about 
Law
31
 questions about 
Space
151
 questions about 
Existence
69
 questions about 
Business
170
 questions about 
Freedom
58
 questions about 
Punishment
80
 questions about 
Death
58
 questions about 
Abortion
51
 questions about 
War
117
 questions about 
Children
27
 questions about 
Gender
287
 questions about 
Language
75
 questions about 
Perception
77
 questions about 
Emotion
75
 questions about 
Beauty
36
 questions about 
Literature
218
 questions about 
Education
70
 questions about 
Truth
88
 questions about 
Physics
221
 questions about 
Value
34
 questions about 
Music
2
 questions about 
Action
81
 questions about 
Identity
134
 questions about 
Love
282
 questions about 
Knowledge
392
 questions about 
Religion
2
 questions about 
Culture
574
 questions about 
Philosophy

Question of the Day

Using ">" for material implication, (P > Q) is equivalent to each of (~ P v Q) and (Q v ~ P). So you can deduce either of those disjunctions. I think it's just a matter of convention to favor the first of them. The reader is expected to notice the equivalence of the two disjunctions.

Now, (Q v ~ P) is certainly not equivalent to (~ Q v ~ P). From Q, you can infer the first of those disjunctions but not the second. The disjunction (Q v ~ P) is equivalent to (P > Q), whereas the disjunction (~ Q v ~ P) is equivalent to (P > ~ Q) and (Q > ~ P).