Our panel of 91 professional philosophers has responded to

574
 questions about 
Philosophy
282
 questions about 
Knowledge
68
 questions about 
Happiness
24
 questions about 
Suicide
221
 questions about 
Value
244
 questions about 
Justice
80
 questions about 
Death
43
 questions about 
Color
374
 questions about 
Logic
54
 questions about 
Medicine
67
 questions about 
Feminism
170
 questions about 
Freedom
58
 questions about 
Abortion
151
 questions about 
Existence
134
 questions about 
Love
75
 questions about 
Beauty
31
 questions about 
Space
39
 questions about 
Race
32
 questions about 
Sport
36
 questions about 
Literature
75
 questions about 
Perception
218
 questions about 
Education
1280
 questions about 
Ethics
23
 questions about 
History
110
 questions about 
Biology
81
 questions about 
Identity
27
 questions about 
Gender
88
 questions about 
Physics
70
 questions about 
Truth
77
 questions about 
Emotion
117
 questions about 
Children
69
 questions about 
Business
392
 questions about 
Religion
2
 questions about 
Action
105
 questions about 
Art
89
 questions about 
Law
287
 questions about 
Language
5
 questions about 
Euthanasia
110
 questions about 
Animals
34
 questions about 
Music
51
 questions about 
War
58
 questions about 
Punishment
154
 questions about 
Sex
284
 questions about 
Mind
124
 questions about 
Profession
2
 questions about 
Culture
96
 questions about 
Time
208
 questions about 
Science
4
 questions about 
Economics

Question of the Day

Using ">" for material implication, (P > Q) is equivalent to each of (~ P v Q) and (Q v ~ P). So you can deduce either of those disjunctions. I think it's just a matter of convention to favor the first of them. The reader is expected to notice the equivalence of the two disjunctions.

Now, (Q v ~ P) is certainly not equivalent to (~ Q v ~ P). From Q, you can infer the first of those disjunctions but not the second. The disjunction (Q v ~ P) is equivalent to (P > Q), whereas the disjunction (~ Q v ~ P) is equivalent to (P > ~ Q) and (Q > ~ P).