Our panel of 91 professional philosophers has responded to

2
 questions about 
Action
67
 questions about 
Feminism
374
 questions about 
Logic
31
 questions about 
Space
58
 questions about 
Punishment
69
 questions about 
Business
80
 questions about 
Death
36
 questions about 
Literature
43
 questions about 
Color
54
 questions about 
Medicine
244
 questions about 
Justice
151
 questions about 
Existence
24
 questions about 
Suicide
2
 questions about 
Culture
81
 questions about 
Identity
170
 questions about 
Freedom
287
 questions about 
Language
282
 questions about 
Knowledge
284
 questions about 
Mind
23
 questions about 
History
154
 questions about 
Sex
208
 questions about 
Science
124
 questions about 
Profession
75
 questions about 
Perception
89
 questions about 
Law
88
 questions about 
Physics
1280
 questions about 
Ethics
70
 questions about 
Truth
51
 questions about 
War
68
 questions about 
Happiness
221
 questions about 
Value
27
 questions about 
Gender
110
 questions about 
Animals
58
 questions about 
Abortion
392
 questions about 
Religion
34
 questions about 
Music
39
 questions about 
Race
105
 questions about 
Art
77
 questions about 
Emotion
5
 questions about 
Euthanasia
4
 questions about 
Economics
75
 questions about 
Beauty
218
 questions about 
Education
134
 questions about 
Love
117
 questions about 
Children
574
 questions about 
Philosophy
32
 questions about 
Sport
96
 questions about 
Time
110
 questions about 
Biology

Question of the Day

Using ">" for material implication, (P > Q) is equivalent to each of (~ P v Q) and (Q v ~ P). So you can deduce either of those disjunctions. I think it's just a matter of convention to favor the first of them. The reader is expected to notice the equivalence of the two disjunctions.

Now, (Q v ~ P) is certainly not equivalent to (~ Q v ~ P). From Q, you can infer the first of those disjunctions but not the second. The disjunction (Q v ~ P) is equivalent to (P > Q), whereas the disjunction (~ Q v ~ P) is equivalent to (P > ~ Q) and (Q > ~ P).