Our panel of 91 professional philosophers has responded to

2
 questions about 
Action
105
 questions about 
Art
70
 questions about 
Truth
88
 questions about 
Physics
58
 questions about 
Abortion
23
 questions about 
History
287
 questions about 
Language
221
 questions about 
Value
27
 questions about 
Gender
117
 questions about 
Children
282
 questions about 
Knowledge
89
 questions about 
Law
134
 questions about 
Love
80
 questions about 
Death
58
 questions about 
Punishment
4
 questions about 
Economics
124
 questions about 
Profession
68
 questions about 
Happiness
54
 questions about 
Medicine
110
 questions about 
Biology
77
 questions about 
Emotion
151
 questions about 
Existence
32
 questions about 
Sport
31
 questions about 
Space
39
 questions about 
Race
36
 questions about 
Literature
81
 questions about 
Identity
244
 questions about 
Justice
75
 questions about 
Perception
218
 questions about 
Education
69
 questions about 
Business
51
 questions about 
War
96
 questions about 
Time
34
 questions about 
Music
75
 questions about 
Beauty
392
 questions about 
Religion
24
 questions about 
Suicide
1280
 questions about 
Ethics
110
 questions about 
Animals
170
 questions about 
Freedom
154
 questions about 
Sex
43
 questions about 
Color
284
 questions about 
Mind
374
 questions about 
Logic
5
 questions about 
Euthanasia
574
 questions about 
Philosophy
67
 questions about 
Feminism
2
 questions about 
Culture
208
 questions about 
Science

Question of the Day

Using ">" for material implication, (P > Q) is equivalent to each of (~ P v Q) and (Q v ~ P). So you can deduce either of those disjunctions. I think it's just a matter of convention to favor the first of them. The reader is expected to notice the equivalence of the two disjunctions.

Now, (Q v ~ P) is certainly not equivalent to (~ Q v ~ P). From Q, you can infer the first of those disjunctions but not the second. The disjunction (Q v ~ P) is equivalent to (P > Q), whereas the disjunction (~ Q v ~ P) is equivalent to (P > ~ Q) and (Q > ~ P).