Our panel of 91 professional philosophers has responded to

31
 questions about 
Space
287
 questions about 
Language
58
 questions about 
Punishment
221
 questions about 
Value
89
 questions about 
Law
67
 questions about 
Feminism
81
 questions about 
Identity
88
 questions about 
Physics
23
 questions about 
History
4
 questions about 
Economics
2
 questions about 
Action
244
 questions about 
Justice
117
 questions about 
Children
1280
 questions about 
Ethics
392
 questions about 
Religion
54
 questions about 
Medicine
39
 questions about 
Race
110
 questions about 
Animals
36
 questions about 
Literature
70
 questions about 
Truth
374
 questions about 
Logic
51
 questions about 
War
69
 questions about 
Business
5
 questions about 
Euthanasia
208
 questions about 
Science
218
 questions about 
Education
75
 questions about 
Perception
27
 questions about 
Gender
170
 questions about 
Freedom
58
 questions about 
Abortion
34
 questions about 
Music
75
 questions about 
Beauty
154
 questions about 
Sex
2
 questions about 
Culture
110
 questions about 
Biology
151
 questions about 
Existence
124
 questions about 
Profession
24
 questions about 
Suicide
574
 questions about 
Philosophy
282
 questions about 
Knowledge
80
 questions about 
Death
134
 questions about 
Love
43
 questions about 
Color
284
 questions about 
Mind
96
 questions about 
Time
105
 questions about 
Art
32
 questions about 
Sport
77
 questions about 
Emotion
68
 questions about 
Happiness

Question of the Day

Using ">" for material implication, (P > Q) is equivalent to each of (~ P v Q) and (Q v ~ P). So you can deduce either of those disjunctions. I think it's just a matter of convention to favor the first of them. The reader is expected to notice the equivalence of the two disjunctions.

Now, (Q v ~ P) is certainly not equivalent to (~ Q v ~ P). From Q, you can infer the first of those disjunctions but not the second. The disjunction (Q v ~ P) is equivalent to (P > Q), whereas the disjunction (~ Q v ~ P) is equivalent to (P > ~ Q) and (Q > ~ P).