Our panel of 91 professional philosophers has responded to

2
 questions about 
Culture
43
 questions about 
Color
80
 questions about 
Death
117
 questions about 
Children
24
 questions about 
Suicide
88
 questions about 
Physics
4
 questions about 
Economics
170
 questions about 
Freedom
124
 questions about 
Profession
96
 questions about 
Time
5
 questions about 
Euthanasia
54
 questions about 
Medicine
244
 questions about 
Justice
36
 questions about 
Literature
110
 questions about 
Biology
287
 questions about 
Language
221
 questions about 
Value
32
 questions about 
Sport
67
 questions about 
Feminism
69
 questions about 
Business
27
 questions about 
Gender
105
 questions about 
Art
218
 questions about 
Education
110
 questions about 
Animals
51
 questions about 
War
374
 questions about 
Logic
1280
 questions about 
Ethics
39
 questions about 
Race
284
 questions about 
Mind
134
 questions about 
Love
81
 questions about 
Identity
2
 questions about 
Action
58
 questions about 
Punishment
151
 questions about 
Existence
68
 questions about 
Happiness
282
 questions about 
Knowledge
89
 questions about 
Law
392
 questions about 
Religion
75
 questions about 
Beauty
574
 questions about 
Philosophy
77
 questions about 
Emotion
154
 questions about 
Sex
70
 questions about 
Truth
58
 questions about 
Abortion
75
 questions about 
Perception
34
 questions about 
Music
23
 questions about 
History
31
 questions about 
Space
208
 questions about 
Science

Question of the Day

Using ">" for material implication, (P > Q) is equivalent to each of (~ P v Q) and (Q v ~ P). So you can deduce either of those disjunctions. I think it's just a matter of convention to favor the first of them. The reader is expected to notice the equivalence of the two disjunctions.

Now, (Q v ~ P) is certainly not equivalent to (~ Q v ~ P). From Q, you can infer the first of those disjunctions but not the second. The disjunction (Q v ~ P) is equivalent to (P > Q), whereas the disjunction (~ Q v ~ P) is equivalent to (P > ~ Q) and (Q > ~ P).