Our panel of 91 professional philosophers has responded to

67
 questions about 
Feminism
2
 questions about 
Action
54
 questions about 
Medicine
221
 questions about 
Value
124
 questions about 
Profession
75
 questions about 
Beauty
134
 questions about 
Love
154
 questions about 
Sex
80
 questions about 
Death
392
 questions about 
Religion
34
 questions about 
Music
77
 questions about 
Emotion
4
 questions about 
Economics
117
 questions about 
Children
75
 questions about 
Perception
282
 questions about 
Knowledge
27
 questions about 
Gender
2
 questions about 
Culture
244
 questions about 
Justice
287
 questions about 
Language
70
 questions about 
Truth
24
 questions about 
Suicide
81
 questions about 
Identity
218
 questions about 
Education
574
 questions about 
Philosophy
96
 questions about 
Time
23
 questions about 
History
5
 questions about 
Euthanasia
170
 questions about 
Freedom
88
 questions about 
Physics
51
 questions about 
War
36
 questions about 
Literature
374
 questions about 
Logic
68
 questions about 
Happiness
39
 questions about 
Race
89
 questions about 
Law
58
 questions about 
Abortion
1280
 questions about 
Ethics
110
 questions about 
Animals
284
 questions about 
Mind
110
 questions about 
Biology
151
 questions about 
Existence
31
 questions about 
Space
105
 questions about 
Art
208
 questions about 
Science
43
 questions about 
Color
69
 questions about 
Business
58
 questions about 
Punishment
32
 questions about 
Sport

Question of the Day

Using ">" for material implication, (P > Q) is equivalent to each of (~ P v Q) and (Q v ~ P). So you can deduce either of those disjunctions. I think it's just a matter of convention to favor the first of them. The reader is expected to notice the equivalence of the two disjunctions.

Now, (Q v ~ P) is certainly not equivalent to (~ Q v ~ P). From Q, you can infer the first of those disjunctions but not the second. The disjunction (Q v ~ P) is equivalent to (P > Q), whereas the disjunction (~ Q v ~ P) is equivalent to (P > ~ Q) and (Q > ~ P).