Our panel of 91 professional philosophers has responded to

218
 questions about 
Education
5
 questions about 
Euthanasia
54
 questions about 
Medicine
282
 questions about 
Knowledge
88
 questions about 
Physics
4
 questions about 
Economics
39
 questions about 
Race
34
 questions about 
Music
392
 questions about 
Religion
110
 questions about 
Animals
287
 questions about 
Language
43
 questions about 
Color
284
 questions about 
Mind
170
 questions about 
Freedom
75
 questions about 
Beauty
208
 questions about 
Science
110
 questions about 
Biology
154
 questions about 
Sex
244
 questions about 
Justice
70
 questions about 
Truth
96
 questions about 
Time
2
 questions about 
Culture
51
 questions about 
War
80
 questions about 
Death
27
 questions about 
Gender
151
 questions about 
Existence
67
 questions about 
Feminism
81
 questions about 
Identity
124
 questions about 
Profession
32
 questions about 
Sport
374
 questions about 
Logic
89
 questions about 
Law
36
 questions about 
Literature
221
 questions about 
Value
31
 questions about 
Space
105
 questions about 
Art
58
 questions about 
Punishment
77
 questions about 
Emotion
69
 questions about 
Business
24
 questions about 
Suicide
23
 questions about 
History
75
 questions about 
Perception
1280
 questions about 
Ethics
68
 questions about 
Happiness
117
 questions about 
Children
58
 questions about 
Abortion
574
 questions about 
Philosophy
134
 questions about 
Love
2
 questions about 
Action

Question of the Day

Using ">" for material implication, (P > Q) is equivalent to each of (~ P v Q) and (Q v ~ P). So you can deduce either of those disjunctions. I think it's just a matter of convention to favor the first of them. The reader is expected to notice the equivalence of the two disjunctions.

Now, (Q v ~ P) is certainly not equivalent to (~ Q v ~ P). From Q, you can infer the first of those disjunctions but not the second. The disjunction (Q v ~ P) is equivalent to (P > Q), whereas the disjunction (~ Q v ~ P) is equivalent to (P > ~ Q) and (Q > ~ P).